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INTRODUCTION

Increased accuracy of measurement techniques in geodesy allows us
to investigate weak short periodic variations in Earth Rotation
Parameters (ERP). These variations in the ERP of a short periodic
nature from 10 to 100 days are of the order of the measurement
error or smaller. Therefore, application of an optimum method of
spectral analysis is very important. In order to determine the
best spectral analysis to find short-period oscillations in real
geophysical data, the following spectral analysis methods have been
used to compute the frequencies in simulated data:

1. Fast Fourier Transformation (FFT),

2. Blackman-Tuckey spectral analysis,

3. Maximum Entropy Spectral Analysis (MESA),
4. Band Pass Filter Spectral Analysis (BPFSA).

The Maximum Entropy Spectral Analysis (MESA) (Burg, 1967; Andersen,
1974; Ulrych and Bishop, 1975) has been improved to detect very
weak short-period oscillations, looking for the optimum
autoregressive order (optimum filter length). Different criteria
to determine the optimum autoregressive order are discussed, and
finally one of these criteria has been improved. The possibility
of the MESA of the autocovariance estimation of a stochastic
process, instead of the MESA of a stochastic process itself (Kosek,
1986, 1990a), as well as the possibility of the moving
autoregressive order in the MESA (Kosek, 1990b), are discussed in
this paper.

1. DESCRIPTION OF THE SIMULATED DATA

The simulated data have been chosen to be similar to observed
geophysical stochastic processes, and are the sum of seven
harmonics with constant amplitudes (Table 1).

Using different numbers of data points from 100 to 500 or 1000, the
model was disturbed by the addition of red or white noise with
standard deviations of 1 to 5 units, which is approximately 1 to
5 times greater than the amplitudes of the model oscillations. Red
noise used here is white noise filtered by the Butterworth high-
pass filter (Otnes and Enochson, 1972) with a cutoff period of six




days.
Table 1. Periods, amplitudes, and phases of the simulated data.

Periods Amplitudes Phases
in days in units

11.0 0.7 0
12.5 0.4 o
15.0 0.8 0
19.0 0.7 . 0
/4.0 0.9 0
33.0 1.0 o
50.0 0.5 0

. THE OPTIMUM FILTER LENGTH IN THE MESA ON THE BASIS OF THE
ROVELLI AND VULPIANI CRITERION

Determination of the optimum autoregressive order in the MESA is
the main problem in this analysis (Ulrych and Bishop, 1975.; Box
and Jenkins, 1970; Haykin, 1979). When it is too large, additional
peaks appear in the spectrum that do not correspond to physically
existing harmonics. When the autoregressive order is too small,
the spectrum is too flat and the resolution of detected
periodicities is insufficient.

The best autoregressive order in the MESA is one that detects only
those periodicities that really exist in geophysical stochastic
processes. The commonly used criteria to determine the optimum
autoregressive order: Akaike's Information Criterion (AIC) or the
Final Prediction Error Criterion (FPE) (Priestley, 1981; Ulrych and
Bishop, 1975) cannot be applied because the spectrum of very noisy
data is too flat. The most appropriate is the Rovelli and Vulpiani
Criterion (RVC) (Rovelli and Vulpiani, 1983):

N-1 .
M= m/2 = |é&(k)]|/ &(o), (1)

where c(k) is the biased estimation of the autocovariance, c¢(o) is
the variance estimation, and N is the total number of data points.

However, this criterion does not always give sufficient results
because the order depends on the number of data, as well as the
signal-to-noise ratio (SNR) (Kosek, 1987a). This criterion has
been improved, and instead of a biased autocovariance estimation
we substitute an unbiased one multiplied by a lag window (Max,
1981). Different lag windows give different spectra, and several
lag windows have been used to detect the periodicities in the
simulated data. The results are shown in Table 2 in the form of
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the number of additional oscillation periods detected by the MESA
with modified Rovelli and Vulpiani criterion (Kosek, 1987a). Zero
denotes the solutions in which the MESA detected all seven model
periods, negative values denote the number of undetected periods
and positive values the number of periods detected in addition to
the 7 modelled periods. Lag windows were selected in order to
increase the value of the filter length from Parzen to rectangular
lag window. In the case of the Parzen lag window, the computed
autoregressive order is usually smaller than in the case of the
rectangular lag window. The peak is detected only at the point
where the spectrum is maximum and the problem is to find a spectral
analysis that has the optimum number of peaks detected. Any other
hills in the spectrum that are not maxima are not defined as peaks,
and it means that the resolution of detected peaks is not
sufficient or the oscillations in a stochastic process do not have
constant frequencies or constant amplitudes.

Table 2. The number of additional peaks detected by the MESA with
modified Rovelli and Vulpiani criterion.

N MODEL + red noise MODEL + white noise

1 2 3 4 5 6 7 1 2 3 4 5 6 7
________________________________ sd - — — - - ——— - — - - - - ;- - - - - -

500 +7 +5 +5 +4 +3 +1 O 1. +13 +5 +2 +2 0 O -3

+5 +4 +1 +1 O O -1 2. +3 0 0 0 -3 -3 -3

+4 43 +2 41 O O -2 3. +2 +1 -2 -3 -3 -4 -4

+5 43 +41 0 O O -1 4. 0 -3 -3 -3 -4 -4 -5

400 +6 +5 +2 +1 0 O O 1. +10 +3 +2 +1 O O -3

+5 +3 +1 0 O -1 -2 2. +2 +1 -1 -3 -3 -4 -4

+5 +1 +1 O0 O -1 -1 3. +1 -1 -3 -3 -3 -3 -4

+5 +1 0 O O O -1 4. -1 -2 -3 -4 -4 -5 -5

300 +4 +3 +2 0 O -1 -2 1. +4 +1 0 0 O -3 -3

+4 +1 0 0 -1 -2 =2 2. +2 0 -2 =3 =3 -4 -4

+4 +3 0 0 O0 -2 =2 3. 41 -3 -2 -4 -4 -5 -5

+5 +43 0 0 O -1 -2 4. -1 -2 -4 -4 -4 -5 -5

200 +2 O -1 -2 -3 -3 -4 1. +1 0 -3 -3 -4 -4 -4

0O 0 -2 -2 -3 -3 =4 2. 0 -3 -4 -4 -5 -5 =5

+1 0 =2 -2 =2 =3 =4 3. -2 -4 -4 -5 =5 =5 =5

+1 0 -2 -2 -3 -3 -4 4. -2 -4 -5 -5 -5 =5 =5

100 0 -3 -4 -4 -4 -4 -5 1. 0 -3 -4 -4 -4 -4 -4

-3 -4 -5 -4 -5 -5 -6 2. -4 -4 -5 -5 =5 =5 =5

-4 -4 -5 -5 -5 -5 -6 3. -4 -4 -5 -5 -5 =7 =7

-4 -4 -5 -5 -5 =5 -6 4. -5 -5 =5 =5 =7 =7 =7

1 - rectangular, 2 - modified Hanning , 3 - parabolic, 4 - Max, 5
- Bartlett, 6 - Blackman , 7 - Parzen lag window, sd denotes the
standard deviation of the noise, N is the number of data points.
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In the case of data disturbed by red noise, the standard deviation
has no influence on the optimum filter length. The choice of a lag
window in this case does not depend on the SNR. An increase in
the amount of data moves the best solution from the rectangular to
the Bartlett lag window.

In the case of data disturbed by white noise, the choice of a lag
window depends not only on the number of data points, but also on
the SNR. A decrease of SNR (an increase in the standard deviation
of white noise) moves the best solution from the Bartlett to the
rectangular lag window.

Without knowing a priori the SNR in a stochastic process, it is
difficult to choose the optimum lag window in order to find the
appropriate spectrum, so it is necessary to use more than one lag
window and choose the most prominent peaks that appear in the
spectra corresponding to these lag windows.

3. THE MESA WITH MOVING AUTOREGRESSIVE ORDER

Instead of applying different lag windows to get the repetition of
periods in spectra, a moving autoregressive order can be introduced
to the MESA (Kosek, 1990Db). This autoregressive order can move
from the order of M1 corresponding to the Bartlett lag window, to
the order of M2 corresponding to the modified Hanning lag window.
The rectangular lag window cannot be applied in order to determine
M2, because the unbiased autocovariance estimation can achieve
large fluctuations at its end when k tends to N-1. The removal of
these large fluctuations is accomplished by using the modified
Hanning lag window. The spectrum of this method is given by the
following formula:

§, = =—m==-- I e (2)
M2-M1+1 m=M1 m
| 1 - = a, exp(-iwk) |
k=1

where G’ is the maximum 1likelihood estimate of the residual
variance, m is the moving autoregressive order, and a, are estimates
of the autoregressive coefficients.

The MESA with moving autoregressive order has been checked on the
simulated data (Table 1) and the results are shown in the form of
additional number of peaks in Table 3.




Table 3. The number of additional peaks in the spectrum of the
MESA with moving autoregressive order.

N 100 200 300 400 500 600 700 800 900 1000
- 8 m~mrerccr e cc e s r rr e s e, e e e e e, e e ————
1. -4 0 0 +4 +5 +9 +10 +12 +14 +16
2. <-4 =2 0 0 0 +1 +3 +5 +7 +9
3. -4 -2 -3 -1 0 0 0 +1 +2 +2
4. -5 =4 -4 -4 -3 -1 1 0] 0 o

N- the total number of data, sd - the standard deviation of white
noise.

An increase in the amount of data increases the number of
additional peaks in the spectrum determined from this method. An
increase of the SNR also increases the number of additional peaks
detected in the spectrum. In order to apply this spectral analysis
to real geophysical data, the SNR should be known a priori and then
the optimum amount of data can be chosen in order to get the
optimum spectrum.

4. THE MESA OF THE AUTOCOVARIANCE ESTIMATION OF A S8TOCHASTIC
PROCESS

In the case of very noisy stochastic processes, the MESA of the
autocovariance estimation can be used (Kosek, 1986, 1990a). When
the stochastic process is stationary, and described by the
autoregressive formula of the order M:

Xe = &%y + %X, + .00 + Xy + N, (3)

then its autocovariance is also the stochastic process with the
same autoregressive coefficients, as well as the same order
(Priestley, 1981):

C, = a,C,; + a,C, + ... + ALy, (4)

where a, are autoregressive coefficients, M is the order, and n, is
white noise.

The autocovariance estimation can be treated as a stochastic
process and can be used as an input to a spectral analysis. It has
been shown (Kosek, 1986) that any lag window applied in the MESA
of the model data always gives the same spectrum.

The MESA of the autocovariance has been tested on the simulated
data, with either the RVC or the AIC being applied. The results
are shown in Table 4 in the form of additional number of peaks
detected.

In the case of the RVC, an increase of the SNR decreases the number
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of peaks in the spectrum and an increase of the amount of data
increases the number of peaks in the spectrum. The number of
additional peaks that appear in the spectrum is very similar to the
solution given by the MESA with moving autoregressive order. 1In
the case of the AIC, the spectrum always has the proper number of
peaks, no matter what the SNR or the amount of data. There is only
a region of weak detectability of periodicities when the SNR ratio
is too small or the total amount of data is too small.

Table 4. The number of additional peaks in the spectrum of the
MESA of the autocovariance estimation.

________ 8 =, r e e e e, ————
1. =3 -1 0 +2 +1 +2 +5 +6 +6 +11
2. -4 -3 0 +1 +1 +2 +3 +8 +10 +8

RVC 3. -6 -4 -4 -1 0 +1 o +6 +2 +8
4. -4 -4 -3 -4 -2 +1 +1 0 -1 +2
1. -5 0 0 0 o 0 0 0 0 +1
2. -5 -5 0 0 0 0 +1 o 0 o

AIC 3. -6 -5 -5 -1 0 0 o +1 +1 0
4, =7 -5 -5 -2 0 0 0 0] +1 0

- —— — —— —— — —— . — —— . . —  ———— — —— N — ———— T — — - — T, — —————————— ——— — ———

sd - the standard deviation of white noise, N - the total number
of data, AIC - Akaike's Information Criterion, RVC - Rovelli and
Vulpiani Criterion.

5. THE BLACKMAN-TUCKEY SPECTRAL ANALYSIS

The Blackman-Tuckey spectral analysis (Blackman and Tuckey, 1958)
is the Fourier Transform of the unbiased autocovariance estimation,
which is multiplied by a lag window. In this analysis the Hanning
lag window was applied in order to detect the number of additional
peaks in the spectrum of the model. This analysis always gives a
large number of peaks in the spectrum, so it is necessary to choose
the most energetic ones. Usually the most energetic peaks exceed
the mean value of the spectrum, so the additional peaks are counted
from the level of the mean value of the spectrum (Table 5).

Table 5. The number of additional peaks in the spectrum of the
Blackman-Tuckey method.

. - - —— —— . . — —— - ——— — — T T o . D G S D - —— ——

N - the total number of model data, sd - the standard deviation of
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white noise added to the model.

The Blackman-Tuckey spectral analysis always gives additional peaks
in the spectrum and this number increases with the total number of
data points, as well as with the standard deviation of the added
white noise.

6. BAND PASS FILTER SPECTRAL ANALYSIS WITH THE USE OF THE ORMSBY
FILTER

The definition of the spectrum (Bendat and Piersol, 1966) is given
by the following formula:

T/2
S(w) = 1lim 1/T [ [ X(w,t) ]}° dt, (5)
T-0 -T/2

where T is the time interval of data, X(w,t) is a stochastic
process with a frequency w.

The stochastic process X(w,t) can be replaced by the following
convolution:

X(w,t) = X(t)*h(v) (6)

where h(w) is the impulse response of an ideal band pass filter,
and X(t) is a stochastic process.

The impulse response h(w) can be estimated by the impulse response
of the Ormsby band pass filter (Ormsby, 1961), that is

h,(v) = 2 sin(nnr) cos(2wnR) sin(2mnB) / r(mn)?, (7)

where R = Atw/(27m), At is the sampling period, r is the difference
between the normalized cutoff frequency r. and the normalized
roll-off termination frequency r,, and B = | (r. + r,)/2 - R |
(Ormsby, 1961).

The parameters of the filter: r=0.01, B=0.3r and the length of the
filter NF=40 have been established in order to get a good
resolution of periodicities, as well as to get the amplitude
response of the filter close to 1 for the frequencv w (Kosek,
1987a).

The spectrum estimation of the Band Pass Filter Spectral Analysis
(BPFSA) can be written as follows:

i N-2NF NF
§(w) = 1/(N-2NF) I S [ Xen ho(w) 1% (8)
t=1 n=-NF

The BPFSA was tested on the model data and the results are shown




in Table 6 in the form of additional number of periods detected in
the spectrum.

Table 6. The number of additional peaks in the BPFSA.

e - e B L ettt X
1. -1 0 0 0 0 0 0 0 0 o]
2. -2 0 0 0 0 0 0 0 0 0
3. -2 0 0 0 0 0 0 0 0 0
4. -2 -1 +1 -1 0 0 -1 -1 -1 0

There are practically no additional peaks in this spectral
analysis. There is a region of weak detectability of periods when
the amount of data is too small or the standard deviation of the
added white noise is too high.

7. THE COMPARISON BETWEEN DIFFERENT METHODS OF SPECTRAL ANALYSIS
AND THE ACCURACY OF DETECTED PERIODS IN THE SIMULATED DATA

The spectra of different methods of spectral analysis: the FFT,
the Blackman-Tuckey, the MESA with the RVC, the MESA of the
autocovariance with RVC, and the MESA with moving autoregressive
order (Fig. 1) have been computed for different standard deviations
of added white noise, and with the number of points equal to 500.
In the case of the FFT (Brigham, 1974), it is not possible to
detect periodicities of the model, even if the standard deviation
of added white noise is equal to 1. In the case of the Blackman-
Tuckey spectral analysis, there is a possibility of detecting the
periodicities of the model oscillations when the standard deviation
of white noise is equal to 2, but when the SNR diminishes, a number
of additional peaks with meaningful amplitudes appear in the
spectrum that do not correspond to oscillations. In the case of
the MESA with RVC, there is also a possibility of detecting
oscillations when the standard deviation of white noise is equal
to 2, but not all the model oscillations are detected. 1In the case
of the MESA of the autocovariance estimation with the RVC, there
is a possibility of detecting all oscillations of the model when
the standard deviation of white noise is equal to 3. The MESA with
moving autoregressive order gives the solution for all
periodicities of the model when the standard deviation of white
noise is equal to 3.

The number of additional peaks in the spectrum does not tell us
about the accuracy of detected frequencies, but it is possible to
compute this accuracy having real frequencies and frequencies
computed by a spectral analysis. If we detect frequencies by a
spectral analysis, we can begin to estimate the accuracies of the
different procedures by first letting
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e = freqmm - freqcomputod' (9)

For the seven frequencies of the model, we can derive seven values
of e, but to show only the one number which can represent the
accuracy of a spectral analysis, the standard deviation from these
true errors must be determined:

v = /(Tee]]7). (10)

The situation is complicated because a spectral analysis never
shows the accurate number of frequencies detected, so another
number that represents the accuracy of a spectral analysis must be
introduced. Looking at any spectrum, we usually choose the most
energetic peaks, and the choice of the final frequencies is
tantamount to the establishment of weights for each of them. These
weights are usually proportional to the magnitude of the spectrum
for each chosen frequency. Thus we can introduce a number that is
the weighted standard deviation of all frequencies in a spectrum
that can represent the accuracy of a spectral analysis:

vV = J([Wee]/[W]) (11)

where W is the weight given by the magnitude of the spectrum for
each chosen frequency at its maximum.

If the additional peaks that appeared in the spectrum are
negligible, then the value of V represents the accuracy of spectral
analysis for only the meaningful frequencies. In the case when the
number of peaks in a spectrum is lower than the number of real
oscillations, then the value of V is a measure of weak resolution
of detected frequencies.

The weighted standard deviation of frequencies has been computed
for the Blackman-Tuckey wmethod, for the MESA with moving filter
length, the MESA of the autocovariance estimation with the AIC and
for the BPFSA. The results in units of a normalized frequency are
shown in Table 7 for different numbers of data points of the model,
as well as fer different standard deviations of white noise added.

The weighted standard deviation of frequencies in each spectral
analysis increases when the standard deviation of white noise
increases. Usually the increase of the total number of data points
decreases the weighted standard deviation of frequencies, but it
increases the standard deviation in the case of the MESA with
moving autoregressive order. These results show that the accuracy
of the Blackman-Tuckey Spectral Analysis is lower than for other
spectral analyses. The accuracy of the MESA of the autocovariance
is higher than for the MESA with moving autoregressive order,
especially when the SNR decreases. The accuracy of the BPFSA is
higher than for the MESA of the autocovariance when the SNR is of
the order of 1.




The choice of the optimum spectral analysis depends on the SNR, as
well as the interval of data. The MESA with moving filter length
cannot be applied to very long series. In this case, the MESA of
the autocovariance with the AIC or the BPFSA can be applied. 1t
must be mentioned that BPFSA takes a lot of computation time.

Table 7. The weighted standard deviations of the computed
frequencies in the model data by the Blackman-Tuckey method, the
MESA with moving filter lenght, the MESA of the autocovariance with
the AIC, and the BPFSA.

. — . — T — T T e T Y S N S D G S e S Gl S SRS AN S R G G S S N G S SN R P e G D S S R M S

The Blackman-Tuckey Spectral Analysis
1. 0.93 0.54 0.38 0.28 0.23 0.20 0.24 0.28 0.33 0.42
2. 0.96 o0.70 0.63 0.39 0.37 0.33 0.29 0.34 0.35 0.38
3. 0.86 0.66 0.87 0.86 0.54 0.60 0.80 0.63 0.62 0.59
4. i1.01 o0.77 0.94 0.90 0.81 0.88 0.85 0.84 1.01 0.98
the MESA with moving filter length
1 0.84 0.15 0.08 0.18 0.21 0.23 0.24 0.24 0.25 0.26
2. 1.04 0.88 0.35 0.13 0.11 0.09 0.37 0.41 0.46 0.43
3. 0.97 1.09 0.90 0.76 0.49 0.30 0.32 0.28 0.39 0.47
4 1.01 1.22 1.22 1.08 0©0.80 0.61 0.58 0.49 0.53 0.50
the MESA of the autocovariance with the aAIC
i. 1.30 ©0.13 0.11 oO0.10 o0.08 0.08 0.08 0.07 0.07 0.07
. 1.45 1.40 0O0.18 0.112 o0.112 0.10 o0.09 0.08 0.08 0.08
3. 1.80 1.41 0.60 0.32 0.13 0.16 0.18 0.22 0.25 0.09
4. - 1.27 0.82 0.49 0.35 0.40 0.41 0.45 0.37 0.30

8. ON THE ACCURACY OF COMPUTATION OSCILLATIONS BY THE ORMSBY BAND
PASS FILTER IN THE MODEL DATA

The Ormsby band pass filter can be applied to detect single
oscillations in the simulated data. The output of the Ormsby
filter is detected by the following convolution (Ormsby, 1961, Hara
and Yokoyama, 1985):

NF
Yo =Z  hy X, (12)
n=-NF
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where h, is the impulse response of Ormsby filter (Eq. 7) and x,
is the input signal which is the model disturbed by white noise,
and NF is the length of filter.

The Ormsby filter with a length of NF=40 has been tested on the
model data. Each oscillation in the model disturbed by white noise
with different standard deviations has been computed by this filter
and then compared with real amplitudes of the oscillations. The
standard deviations of the amplitudes (Table 8) increase with the
standard deviation of white noise added, and do not depend on the
frequency or the amplitudes of oscillations.

In order to determine how the filter length infuences the standard
deviation of detected amplitudes as a function of white noise
standard deviation, a similar test has been performed (Table 9).
The standard deviation of the amplitudes has been computed as the
mean from standard deviations of all seven frequencies of the
model.

Table 8. The standard deviations of the amplitudes of oscillations
computed by the Ormsby band pass filter with filter length NF=40,
as well as different standard deviations of white noise added to
the model.

Period 11.0 12.5 15.0 19.0 24.0 33.0 50.0
Amplitude .7 .4 .8 .7 .9 1.0 .5
-———— sd ————————————————————————————————————————————————
0. .06 .06 .06 .09 .10 .10 .09
1. <17 .20 .19 .17 .16 .18 .18
2. .28 .28 .30 .37 .39 .32 .33
3. .54 .50 .48 .44 .46 .42 .45
4, .53 .63 .49 .59 .67 .66 .63
Table 9. The mean standard deviations of the amplitudes of the

oscillations determined by the Ormsby filter with different filter
lengths and different standard deviations of white noise added to
the model.

—— W T . — T TR I U D D T U RS D W S R - - S - -

NF 15 20 25 30 40 80
B - e BT ke
0. .31 .22 .17 .13 .08 .03
1. .34 .26 .22 .20 .18 .16
2. .38 .34 .33 .32 .32 .32
3. .48 .47 .46 .46 -47 .46
4. .60 .58 .57 .59 .60 .61

An increase of the filter length improves the results of detected
amplitudes when the standard deviation of white noise does not
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exceed 2. It is possible to detect very weak oscillations with
amplitudes even 2 times smaller than the measurement error when the
filter length NF is equal to 40.

. COMPUTATION OF SHORT-PERIOD VARIATIONS IN THE ERP DETERMINED
BY SLR AND VLB

In order to analyze short periodic variations in the ERP, the
original data have been filtered by the band pass filter G5-B140
(Kolaczek and Kosek, 1985; Kolaczek, Kosek and Galas, 1986). This
filter consists of the low pass Gaussian filter - G5 (Feissel and
Lewandowski, 1984) with full width at half maximum (FWHM) equal to
5 days and the Butterworth high pass filter - B140 with cutoff
period of 140 days. The output from the Gaussian filter was an
input to the Butterworth filter, which enables removal of icna-
period oscillations greater than 150 days.

Next the MESA with moving autoregressive oider has been applied to
the filtered ERP determined by VLBI(IRiS) and SLR(CSR-84L02) in
order to detect periodicities in these processes. 1In the case of
the pole coordinates, the whole interval of observation data from
MJID=45400 to MJID=47000 was divided into 3 intervals (45400~ 46000,
46000-46500, 46500-47000) in order to determine the repetition of
detected periodicities. In the case of LOD(CSR) and UT1-UTC(IRIS),
the whole interval data was divided into 2 intervals (45400-46200,
46200-47000) .

The MESA of the autocovariance with the AIC and the Band Pass
Filter Spectral Analysis have been applied to the whole data
interval from MJD=45400 to MJD=47000 (extended for pole coordinates
to MJD=47200).

The results for pole coordinates (Table 10) show a good repetition
of detected periodicities of 100-120, 50-70, ~35, 26-28, ~22, ~19,
~16, =~14, ~12 and ~10 days for different methods of spectral
analysis, as well as for different observational techniques.

The BPFSA spectra of the pole coordinates computed from MJD=45800
to MJID=47200 are shown in Fig 2. It can de seen that the high
frequency fluctuations from 10 to 40 days in Y-IKi5 couurdinate have
bigger amplitudes than for Y-CSR coordinate, since the magnitude
of the spectrum is proportional to the square of mean amplitudes
of oscillations.

In the case of the Earth's rotation rate represented by the LOD and
UT1-UTC there is also a good repetition of detected periodicities
of about ~75, ~50, ~35, ~27, 21-24, and ~13.7 days. The 27 and
13.7 days oscillations in UT1-UTC are of tidal origin while the
same oscillations detected in the LOD are nontidal, since all tidal
terms up to 35 days were removed (Yoder, et al., 1981). There is
a possibility of solar activity contribution to the Earth's
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rotation rate driven by the exchange of the angular momentum of the
atmosphere with the angular momentum of the solid Earth (Kosek,
1990b) .

Table 10. Short periodic oscillations in the pole coordinates
determined by SLR and VLBI computed by the MESA with moving
autoregressive order, the MESA of the autocovariance with the AIC
and the Band Pass Filter Spectral Analysis. Periods are given in
days.

MESA-moving order (AIC) BPFSA MESA-moving order (AIC) BPFSA
45400 46000 46500 45400 45400 45400 46000 46500 45400 45400
46000 46500 47000 47200 47200 46000 46500 47000 47200 47200

- T —— T . — . —— — — —— T T WD D ——— — - A - —

X-SLR Y-SLR
146.7 104.7 126.9 98.0 126.3 94.6 98.5 100.2
70.1 69.2 65.4 61.0
56.9 48.9 49.6 48.0
35.9 32.6 33.7 35.9 36.9 40.9 32.6 37.9
28.6 28.1 29.4 29.1 29.7
26.0 26.7 26.8 27.0 24.2 25.8
22.7 22.8 22.7 22.0 21.2 22.0 22.1
19.4 18.6 19.0 19.0 19.0 18.9 18.4 18.8
17.0 15.7 17.5 15.5 17.3 16.2 15.4 16.3 16.7
14.1 14.7 13.7 15.1 13.6 14.5 13.8 14.7 14.0
13.1 12.9 13.2 12.9
12.2 12.2 12.4 12.1
11.7 11.8 11.5 11.2 11.1 11.3 11.3 11.2
10.4 10.3 10.6 10.5 10.1 10.5
X-VLBI Y-VLBI
118.7 104.8 129.3 101.1 110.8 107.0
65.3 80.2 63.5 79.0 56.6 59.6
47.1 56.4 46.5
36.3 34.7 36.9 39.8 34.9
29.5 29.5 29.0 30.3
26.9 27.5 27.3 26.7 27.4 28.0
22.0 22.3 23.4 22.4 22.7 21.8 21.4 21.5
19.4 20.5 19.1 19.7
17.7 16.8 18.4 16.9 17.2 16.7
14.3 14.6 13.8 14.6 14.6 14.6 14.8 14.0 14.6
13.4 12.9 13.0 12.9 13.3 12.9
1.9 12.1 11.9 11.8 11.8 11.8 11.6
10.2 11.0 10.1 10.3 10.9 10.7 10.0 10.4
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Table 11. Short-period oscillations in the LOD(CSR-84L02) and
UT1-UTC (IRIS) computed by the MESA with moving autoregressive
order, by the MESA of autocovariance with the AIC, and by the
BPFSA.

SLR (LOD) VLBI (UT1-UTC)
MESA MESAc BPFSA MESA MESAc BPFSA
moving order (AIC) moving order (AIC)
45400 46200 45400 45400 45400 46200 45400 45400
46200 47000 47000 47000 46200 47000 47000 47000
72.0 78.0 72.8 77.5 80.0 80.0 143.8
46.0 54.0 57.0 47.0 47.0 43.7 47.9
33.3 33.6 33.5 33.9 36.0 36.2
27.9 25.6 29.0 27.6 27.3 27.9
24.5 21.6 21.2 21.8 22.5 22.2 22.7
18.0
13.8 13.7 13.7 13.8 13.6 13.6 13.7

10. COMPUTATION OF OSCILLATIONS BY THE ORMSBY BAND PASS FILTER

Oscillations with periods detected by three independent spectral
analyses have been computed by the Ormsby band pass filter in the
pole coordinates filtered by the G5-B140 filter. Adding output
signals from this filter, the deterministic parts have been
computed. After subtracting these deterministic parts from
filtered data, the final residuals have been determined. The
deterministic part can be checked by comparison of the
autocovariance estimations of the data filtered by the G5-B140
filter and of the final residuals (Fig. 3). The autocovariance
estimations of the final residuals do not have the oscillating
character and they are similar to the autocovariance of red or
white noise.

CONCLUSIONS

In the case of very noisy stochastic processes, the MESA with
moving autoregressive order, the MESA of the autocovariance
estimation with the AIC, and the BPFSA methods are the most
appropriate. The analysis on the simulated data disturbed by white
noise shows that they can be applied even if the standard deviation
of the noise exceeds 3 times the mean amplitude of the
oscillations. These spectral analyses, when applied to the ERP,
give repetition of detected oscillations in the case of each
coordinate, as well as of each independent technique. However the
BPFSA method does not give a good resolution of detected
periodicities.
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The comparison of the autocovariance estimations before and after
subtraction of the deterministic parts computed by the Ormsby band
pass filter leads to the conclusion that the oscillations detected
by the Ormsby filter are real. The comparison of some of the
oscillations of ~100, ~50, ~35, and ~27 days detected in pole
coordinates of two different techniques (Fig. 4) indicates that
they are true polar motion.
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FIGURES:

1. The comparison of different spectral analysis techniques as
applied to the model data of N=500 points disturbed by white noise
with different standard deviations. sd - standard deviation of
added white noise to the model, FFT- Fast Fourier transform, B-T
(Hanning) - Blackman Tuckey spectral analysis with Hanning lag
window, MESA (RVC) - Maximum Entropy Spectral Analysis with
Rovelli-Vulpiani Criterion, MESA cov (RVC) - the MESA of the
autocovariance with RVC, MESA (MO) - the MESA with moving
autoregressive order.

2. The Band Pass Filter Spectrum of the pole coordinates determined
by SLR and VLBI techniques and filtered by the G5-B140 filter.

3. The autocovariance estimations of pole coordinates filtered by
the G5-B140 filter and of their final residuals obtained after
subtracting the deterministic parts.

4. The most energetic short-period oscillations computed by the

Ormsby filter in x and y determined by the SLR and VLBI (dotted
line) techniques.
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Figure 2
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Figure 3
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Figure 4
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Figure 4 continued
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